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Berry phases and Hamiltonian time dependence 
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Received 29 August 1990 

Abstract. We show that (non-adiabatic) Berry phases in time-independent systems 
arise for fundamentally different reasons than those for time-dependent systems. For 
time-independent Hamiltonians the Berry phases are seen to only depend on the 
chosen cyclic initial state, the Hamiltonian merely providing the appropriate period. 
We also discuss two time-dependent examples where the time dependence arises from 
different sources, namely a tw-level atom in an intense laser and a harmonic oscillator 
with a periodic forcing term. 

1. Introduction 

In this paper we discuss the relationship between the Berry phase and the time de- 
pendence of the Hamiltonian. In section 2 we show that the origin of Berry phases for 
time-independent systems differs fundamentally from their origin in time-dependent 
systems and prove that  for constant Hamiltonians the details of the Hamiltonian are 
only relevant in finding the appropriate period, the numerical values of the Berry 
phases being Hamiltonian independent. In section 3 we discuss how time dependence 
can arise in quantum systems. 

We then discuss some examples of the Berry phase for time-dependent systems. 
In section 4 we discuss the Berry phases for two-level atoms in strong near-resonant 
fields. In this system the time dependence is generated by tracing out the experimen- 
tally irrelevant photon states in the density operator and showing that the reduced 
electronic density operator is generated by a time dependent Hamiltonian. This gives 
the same result as the well known heuristic method of replacing the creation opera- 
tor for the boson field by the function elwt. In section 5 we discuss another system 
involving bosons, the forced harmonic oscillator. Here we find that the existence or 
otherwise of any cyclic initial states is dependent on the non-existence or otherwise of 
a single Fourier component in the periodic forcing term. For convenience we set h to  
be unity. 

2. Time-independent systems 

Consider a constant Hamiltonian H and some arbitrary time f. As H may be regarded 
as being i-periodic we may use the Floquet theory formalism of Moore and Stedman 
(1990b), decomposing the evolution operator C’ into the product form c’ = Zel”‘ 

0305-4470/90/235523+12$03.50 @ 1990 IOP Publishing Ltd 5 5 2 3  



5524 D J Moore 

where Z is unitary and i-periodic and M is self-adjoint and constant. We find tha t  
the eigenvectors 4@(O) of M are cyclic initial states and that they have Berry phases 

r i  

J a  

Now a particular choice for Z and M is not unique as given one choice an equally 
valid one is 

where N is an  arbitrary operator whose eigenvectors are the cyclic initial states of H 
and all of whose eigenvalues are integral. This does not usually cause any problem, 
as in most cases all possible choices are equally valid. However there is one impor- 
tan t  exception; if one choice of Mf is quasi-degenerate in the sense tha t  two of its 
eigenvalues differ by an  integral multiple of 2~ then there exists an  M ’ f  that  has truly 
degenerate eigenvalues. If this is the case there will exist eigenvectors d(0) of M’ tha t  
are not eigenvectors of M so tha t  not all of the cyclic initial states will be eigenvectors 
of M .  We will show tha t  for a constant Hamiltonian we can always choose a period 
i s u c h  tha t  two given cyclic initial states become quasi-degenerate and that it is this 
quasi-degeneracy tha t  allows us to  get non-zero Berry phases for time independent 
systems. This can be compared to time-dependent systems which can have non-zero 
Berry phases in the abscence of quasi-degeneracy. 

For our constant Hamiltonian H we may choose Z = I and M = -H. If t is such 
tha t  no  two eigenstates of Mf are quasi-degenerate then this choice is adequate for 
a complete description of the cyclic initial states. Thus  as 2.2 = 0 all of the Berry 
phases must vanish. However given any two eigenstates $a and qP of H with energies 
E,  and E p  respectively, taking Ep > E,  for convenience, we can choose 

i = 2T(E, - E J 1  (4) 

making q5a and 4p quasi-degenerate so that any initial state of the form 

$ ( O )  = a a 4 a  + ap4p (5) 

is cyclic. This quasi-degeneracy can be transformed into a real degeneracy by trans- 
forming Z and M as in (2) and (3) with the diagonal operator N with eigenvalues 
n, = 0 and np = 1. This gives 

Z’*Z’ = - 2 ~ i N / f  (6) 

so tha t  

i Z”2 ld t  = 2nN 

Thus  from (1) the cyclic initial state a,4, + a p 4 p  has Berry phase 
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We may use this general result to rederive the Berry phases for the Hamiltonian 

H = - /JBu,  (9) 

discussed by Aharonov and Anandan (1987). This has eigenvectors 

m , = ( ; )  

63= (;) 
with energies E, = - p B  and Eo = p B  respectively. Thus  t o  get Berry phases we 
must choose ?= r / p B  and so for the arbitrary cyclic initial state 

we get the Berry phase frorn (8) 

y = 7r( 1 - cos e )  (13) 

in agreement with the  previous authors. 
Thus  we have seen tha t  Berry phases for time-independent systems arise for a 

different reason than those for time-dependent systems. T h a t  is, they arise due to 
the fact tha t  for a certain choice of period two or more cyclic initial states become 
degenerate eigenvectors of M .  This means tha t  an arbitrary linear combination of 
them is also a cyclic initial state and we find tha t  it is these states tha t  have non-zero 
Berry phases. 

3. Time-dependent systems 

We now turn to time-dependent systems, which can exhibit non-zero Berry phases 
when there is no quasi-degeneracy. As an isolated system must have a time- 
independent Hamiltonian, the time dependence, and so the  Berry phases of the system, 
must come from an interaction of the system with its surroundings. Two examples of 
such an interaction have already been given. 

In Berry’s original paper on the adiabatic Berry phase (Berry 1984) the time 
dependence comes from external parameters that  are varied adiabatically about some 
closed pa th .  This is effectively a classical treatment of the surroundings. We note 
tha t  if the variation of the parameters is non-adiabatic we still get a time-dependent 
Hamiltonian and we may find its non-adiabatic Berry phases. As Anandan (1988) has 
pointed out the variation does not even have to be cyclic; however for this case the 
Hamiltonian is not periodic and so we cannot use the Floquet formalism. 

Other authors have looked a t  the situation where the external fields are themselves 
quantised by using the Born-Oppenheimer approximation (Moody e2 a1 1986). In this 
approach one can either concentrate on the fast variables, in which case one gets a 
Berry phase by varying the  slow variables over a closed path in the spirit of the classical 
treatment of the surroundings, or one can concentrate on the slow variables whereupon 
the  Berry phase manifests itself as a gauge field in the effective slow Hamiltonian. 



5526 D J Moore 

In the following we discuss two systems involving bosons in some way. In the first 
we discuss a third way of generating time dependence in our system. We start  with 
a time-independent Hamiltonian involving coupling between bosons and fermions, in 
this case the interaction between light and a two-level atom. When we trace out the 
boson states in the joint density operator to  get an electronic reduced density operator 
we find that the effective electronic Hamiltonian is time dependent. The second system 
we discuss is an example of Berry's method for generating time dependence, that  is we 
have a boson Hamiltonian containing a time-dependent forcing term that arises due to  
some unspecified coupling of the classical surroundings with the quantum system. This 
system exhibits unusual behaviour in that the presence or otherwise of a certain Fourier 
component in the forcing term determines whether or not any cyclic initial states 
exist. If this component is not present we find that  every state is cyclic, providing 
the ultimate example of quasi-degeneracy, whereas if the component is not present no 
state is cyclic. 

The two-level atom example provides a system where the Berry phases in the 
electronic subsystem are directly interpretable in terms of the energy levels of the 
time-independent Hamiltonian of the joint electron-photon system and are readily 
experimentally verifiable. In fact we find that the overall phases for the two cyclic 
initial states of the electronic subsystem are directly related to the Rabi oscillation 
frequency and the splitting of the Mollow triplet, two well known quantities in quantum 
optics. This relationship has also been discussed by Tewari (1989) in the adiabatic 
context. We use the Floquet Hamiltonian approach of Moore (1990) and exploit the 
relationship between the fictitious Floquet Hamiltonian and the actual joint electron- 
photon Hamiltonian noted by Shirley (1965). 

4. The two-level atom 

Here we discuss the Berry phases for two-level atoms in strong near resonant fields. 
Consider an atom in a strong laser beam that is nearly in resonance with one of the 
gaps in the atomic spectrum, say between the two states I+) and I-}. Then to  a good 
approximation the system behaves as a two-level atom with joint electron-photon 
H ami 1 toni an 

H = Ea,  + wb'b + X(a+b + o-b*) (14) 
in the product basis {I&,.)}, where 172) is a photon number state and Re have made 
use of the rotating wave approximation. To calculate the semiclassical electronic 
Hamiltonian we will derive the density operator p for the joint system, trace out the 
photon label n to find the electronic reduced density operator pa and show that pa is 
generated by a Hamiltonian Ha. This is the semiclassical Hamiltonian. 

4.1. The semiclassical Hamiltonaan 

We assume that the density operator initially represents a pure state that factorizes, 
i.e. the system is initially in the pure state 

S ( 0 )  = +a(') 8 S p ( 0 )  

ICl,(O) = a+l+) + a- I-) 

(15) 
where $,(O) is a general atomic state 

(16) 
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and $,(O) is the coherent state 

n = O  

We choose the coherent state as this corresponds to the classical limit of the laser 
output (Loudon 1983). For inessential simplicity we take z to be real, corresponding 
to an  initial phase of zero for the semiclassical photon field. 

To calculate the evolved state $ ( t )  and so the density operator p,  we decompose 
$(O) in (15) into a sum of eigenstates of the Hamiltonian H in the standard way. Now 
it may readily be verified tha t  H has eigenvectors 

with eigenvalues 

where n is a non-negative integer, 0: = ( n  + 1)X2 + ( E  - ~ / 2 ) ~  and z ~ , ~  = 
(28n)-'/2(On 7 w/2  & E ) ' l 2 .  Now we are assuming tha t  the laser is strong so tha t  t 
is large. This means that the Poisson distribution of photon number state occupan- 
cies is strongly peaked about the mean 7 i  = t?. Thus  we can ignore the contribution 
to the  initial s ta te  of terms with small n ,  in particular the n = 0 terms. With this 
simplification we find tha t  

n = l  

where 

(23) 

(24) 

2 c+,n = a+(Z-,nP+,n + zp,np- ,n)  + ~ ( n  + 1)-1/2a-Z+,n2-,n(P-,n -P+,n)  

c-,n+1 - a-(z+,np+,n + z-,np-,n) + z - l (n  + 1)''?a+z+,nz-,n(p-,n - P + , n )  
- 2 2 

and ph,n = exp (-it(w/2 
Further, as the photon number state occupancy distribution is very narrow we can 

replace n in the expression for On with its mean value t2 giving O2 = b? + ( E  - w/2)? 
where IC = Z X  is the effective interaction parameter. Thus x ~ , ~ ,  p,t,n and C+ can be 
taken to be independent of n so tha t ,  restoring the n = 0 term for convenience, ( 2 2 )  
simplifies to 

On)) .  

Using the fact tha t  the density operator is given by p ( t )  = I $ ( t ) ) (+ ( t ) l  we can easily 
trace out the photon label n to give the electronic reduced density operator 

p , ( t )  = c+F+~+)(+I + ctz-e-iwtl+)(-l + c-C+elwt/+)(-I + c-~- l - ) ( - l  (26) 
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where 

one can readily show tha t  the electronic reduced density operator pa is generated by 
the electronic semiclassical Hamiltonian 

Thus  we can explicitly see how a semiclassical field induces time dependence in the 
Hamiltonian of the fermionic sytem upon which i t  acts. We note that the semiclassical 
limit for this problem corresponds to simple-mindedly replacing the boson creation 
operator 6' by the function ,zeiwt. 

4.2. Berry phases  

The  Berry phases for this Hamiltonian have already been calculated by Moore (1990). 
The  cyclic initial states are given by 

4*(0) = w,l+) + z*l--) (32) 

and have overall phases 

x* = ( - w / 2  -f 0)i. (33) 

where i =  2n/w and xh and 0 are as before. Thus  we can see tha t  p = (x+ - x - ) t / s  
meaning tha t  information about the difference in overall phase for the two cyclic 
initial states is contained in the reduced density operator. This is because there is 
only one arbitrary phase in quantum mechanics. In the following we show tha t  this 
phase difference is measurable and in fact has already been measured on numerous 
occasions. This has already been noted by Tewari (1989) in the context of adiabatic 
evolution. First we will show tha t  the difference in overall phase is related to the well 
known Rabi oscillation frequency. This follows immediately from our expression for 
pa. Choose a- = 1 and a t  = 0 so that the a tom is initially in the ground state. Then 
the expectation value of the electronic energy operator, He = Ea,  is given by 

( H , ) ( t )  = -E[1 - 4z:rl(l - cosp)] (34) 

which reduces to the standard expression for the Rabi oscillation (Allen and Eberly 
1975) when we substitute for zf. 
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We will now show that the difference in overall phases is related to  the splitting 
of the Mollow triplet. This is most easily seen by exploiting the relationship between 
the fictitious Floquet Hamiltonian HF, used here to  calculate the Berry phases, and 
the joint electron-photon Hamiltonian H first noted by Shirley (1965). 

In the extended product basis {If, n)}, where n is now allowed to  take negative 
values, the Floquet Hamiltonian has the matrix elements 

where the H["] come from the Fourier decomposition of the Hamiltonian H ,  and (Y 

and P take the values f. This is very similar in form t o  H except that  n can be 
negative and the off diagonal terms in H involve n'/2X instead of I C .  However, noting 
that  the distribution of the occupations of the photon number states is very narrow 
we see that  the Hamiltonians have the same spectra in the physically relevant range. 

In the region of interest both spectra are comprised of evenly spaced doublets. 
Now the doublet splitting in H gives the well known splitting of the Mollow triplet 
(Cohen-Tannoudji 1977), while the doublet splitting in H ,  is, up to  a factor of l/i, the 
difference in overall phases. Thus, as the two splittings are the same, the difference in 
overall phases is measurable as the splitting of the Mollow triplet. 

4.3. Discussion 

In the above we have demonstrated how the overall phases in a fermion subsystem 
coupled to  a single boson mode can be interpreted in terms of the energy levels of the 
time-independent joint system. These ideas can be generalized slightly to  include ei- 
ther more than one boson mode or anharmonicity. We discuss systems with degenerate 
boson modes first. 

Given a constant boson-fermion Hamiltonian with N degenerate boson modes we 
can form the semiclassical fermion Hamiltonian by replacing the N creation operators 
b; with the functions eiejeiwt. This gives the same result as if we had taken the 
semiclassical limit of the single-mode Hamiltonian that arises when we replace the 
creation operator b; with the rephased creation operator eiejb*. For example, if we 
take the E @ E Jahn-Teller Hamiltonian 

discussed by Moore and Stedman (1990a), then we get the same semiclassical Hamil- 
tonian, and so the same Berry phases, as the single mode Hamiltonian 

H ' =  E I + ~ u * u + ~ x s ~ ~ ' / ~ E ( u + u *  + a - a )  (37) 

which involves the squeezed state mode (Yuen 1976) 

a = pb + ub* (38) 

where p = ( 2 ~ i n ' / ~ t ) - ' ( l  + ie-'f), U = ( 2 ~ i n ' / ~ E ) - ' (  1 + ie'c) and we have replaced 
the two phonon creation operators b; and b; with b* and eieb* respectively. 

We can also look a t  boson-fermion Hamiltonians involving anharmonicity. In fact, 
given a general &periodic fermionic Hamiltonian H with Fourier decomposition 

03 
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if we make the replacement 

we generate a constant boson-fermion Hamiltonian that gives H in the semiclassical 
limit, the Fourier components with In1 > 1 giving anharmonicity. Thus we can inter- 
pret the overall phases of any periodic fermion system in terms of the energy levels of 
a particular time-independent boson-fermion Hamiltonian. 

Finally we survey other workers who have discussed Berry phase for two-level 
atoms. Ellinas e t  a i  (1989) approach this problem by adiabatically varying the de- 
tuning, coupling strength and phase properties of the laser. In effect this means that 
they superimpose an experimentally controllable periodic adiabatic motion on the 
naturally periodic motion of the system. The same kind of analysis is discussed by 
Andreev et a1 (1990). Breuer and Holthaus (1989) also discuss adiabatic variation of 
the laser parameters. They use a two-time formalism and discuss Landau-Zener tran- 
sitions. Garrison and Wright (1988) and Chu e t  a i  (1989) analyze dissipative systems 
with non-self-adjoint Hamiltonians. Tewari (1989) discusses essentially the same two- 
level atom results as here but requires that  the system be adiabatic. Finally Argawal 
(1988) shows how quantum beat experiments can be used to  probe the topological 
phases associated with Rabi oscillations. 

5.  The forced harmonic oscillator 

We now turn to  a discussion of the Berry phases for forced harmonic oscillators. 
Consider the Hamiltonian for the periodic forced harmonic oscillator 

H ( t )  = wb'b + f ( t ) b *  + f ( t ) b  + P ( t )  (41) 

where f and /3 are 2~/w-periodic. We will couch our discussion in the language 
of standard coherent states (Perelomov 1986) because of the following result which 
greatly simplifies the argument; it is well known that if the system starts i n  a standard 
coherent state 

n=O 

then it will remain in a coherent state (Glauber 1966). That  is, there exist solutions 
of the time-dependent Schrodinger equation of the form 

Now it  is readily shown that z satisfies the classical equation of motion 

i = -i(wt + f) (44) 

(45) 

so that 
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Thus, as no two coherent states are equal up to a phase, in order to get cyclic 
evolution for a given initial coherent state Iz) we require z ( i )  = z ( 0 )  where t = 27r/w. 
Now from (45) 

1 

~ ( i )  = r ( 0 )  - i Jd f(t)e'"'dt 

Thus we can distinguish two cases. If si f(t)eiwtdt = 0 then we get cyclic evolution 

for every initial coherent state,  whereas if si f(t)eiwtdt # 0 then we do  not get cyclic 
evolution for any initial coherent state.  We note that as f is i-periodic we can expand 
it in a Fourier series 

so tha t  s,' f(t)eiw'dt = if[-'] and the existence of coherent cyclic initial states depends 
on the non-existence of this Fourier component. In the following we analyze the case 
when this component vanishes and the case when it does not separately. 

5 . 1 .  Case I 

Here we show that if f[-l] vanishes then not only are all coherent states cyclic but 
in fact all states are cyclic. This is because the coherent states' overall phases are 
all the same. Thus  any linear combination of them is again a cyclic initial state with 
the same overall phase. The  result then follows from the fact that  the coherent states 
form a complete (in fact overcomplete) set. Tha t  the coherent states must all have 
the  same overall phase follows at once from the  fact t ha t  the cyclic initial states are 
eigenvectors of the self-adjoint operator M in the decomposition U = Ze'"'. If any 
two coherent states had different overall phases then they would belong to different 
eigenspaces of M and so would be orthogonal, which is impossible. For completeness 
we will exhibit the independence of the overall phase on the initial state explicitly. 

One can readily show tha t  the phase angle 0 in (43) satisfies the equation 

- e =  ' ( f z + y z ) + P  2 (48) 

so that the overall phase is given by 

To show tha t  this is independent of the initial state I z ( 0 ) )  we need merely show tha t  
f f d t  is independent of z ( 0 ) .  This follows from the equation for z and the fact t ha t  

si feiwtdi = 0 and so the overall phase is independent of the initial state as required. 
I t  can 

readily be shown that (43) ,  (44) and (48) lead to 
We will now calculate the Berry phases for the initial coherent states. 
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so, using the fact tha t  the dynamical phase is given by 

we find tha t  

which can readily be converted into an  integral involving only f and p if required. 

5.2. Case 11 

Here we show tha t  if f[-l] does not vanish then not only are no coherent states cyclic, 
but no  states are cyclic. This provides an example of a system with an infinite- 
dimensional Hilbert space whose evolution operator a t  time does not have any eigen- 
vectors. This  is in marked contrast to the case of systems with finite-dimensional 
Hilbert spaces, as there the evolution operator is always diagonalizable and there is 
always a complete set of cyclic init id states. 

We use the fact tha t  the set of coherent states is complete, i.e. there exists a 
spectral resolution of unity 

where, for z = z1 Siz ,  with z1 and 2 ,  real, the measure is given by dp(z)  = r-’dz,dz,. 
Thus  an  arbitrary state can be written 

where b ( z )  = ( z l w ) .  Further if $J’ = fdp(z)b’(z)lz) then II, = I)’ if and only if 
b ( 2 )  = b’(z) for all z .  T h a t  this is so is most easily seen by considering the magnitude 
of 1c, - 7)’ .  

Now imagine tha t  $(O) = f dp(z)b(z)lz) is a cyclic initial state.  Then 

$(?) = /dp(z)eiXb(z)lz) (55) 

where x is the overall phase. Now putting IC = if[-1] and noting tha t  z ( i )  = z(0) - ik 
we can see that It) evolves into eiX(’)lz - ik). Thus 

where we have used the fact tha t  d p ( z  + i k )  = dp(z) for constant k. Hence comparing 
( 5 5 )  and (56) we must have 

e’Xb(z) = elX(z+Lk)b(z + i k )  (57) 
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which gives 

lb(z)12 = ( b ( z  + ink)['  

for all integral n. 
We now show tha t  this relation means that $ ( O )  cannot be normalized so that 

there are no cyclic initial states. For convenience we take k to be real, however the 
proof is equivalent for arbitrary k. For $ ( O )  to be normalized we require 

JdP(Z)Ib(%V = 1. (59) 

We write Sdp(z)lb(z)1' = R - ~  J-", V(z,)dz,, where V(zl)  = J-", Ib(z,  + iz2)12dzz. 
Now we can split the integral over z2 into the sum 

Using the periodicity of (b ( z ) ( '  under translation by C along the imaginary axis we 
can recast (60) into the form 

which is obviously infinite. Thus  there are no normalizable cyclic initial states for the  
periodic forced harmonic oscillator with f[-'] non-zero. 

5.3. Discussion 

In the above we have shown how the periodic forced harmonic oscillator may or may 
not have any cyclic initial states depending on the existence of a certain Fourier 
component in the forcing term. This work can be generalized slightly by noting that 
Glauber (1966) showed that the most general form of periodic oscillator Hamiltonian 
tha t  preserves coherence is in fact 

H ( t )  = w( t )b*b  + f ( t ) b  + T ( t ) b  + P ( t )  (62) 

where we take w ,  f and P to be f-periodic for some f. This leads to  the same equation 
for z as for constant w and we find that 

z = [ z ( 0 )  - i 1' fexp  (i l' w d P )  dt'] exp (-i l i w d t )  (63) 

so tha t  we get cyclic evolution for the unique initial coherent state with 

-iexp (-i J: dl) 
L ' f e x p  (i 1' udt') dt (64)  

' ( O )  = [ 1 - exp (-i 1; d t ) ]  

where we have assumed tha t  exp(-i dt)  # 1. 
Finally we survey other workers who have discussed similar problems. Chaturvedi 

e t  a1 (1987) discuss Berry phase for the forced harmonic oscillator by adiabatically 
varying the forcing term f ( t ) .  In effect this means tha t  they choose f to have a much 
longer period than the period 2 ~ / w  used here. Brihaye e t  a1 (1990) discuss Berry 
phases for coherent states in a general context. 
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6. Conclusion 

In the above we have discussed the relationship between Berry phase and the time 
dependence of the Hamiltonian and provided two examples where the time dependence 
of the Hamiltonian is generated in different ways. There is much scope for expanding 
the ideas of this work. One obvious one we are currently studying is how to use 
the two-boson mode formalism to suppress the usually dominant rotating wave part 
of the electron-photon interaction, either by making an appropriate choice of phase 
difference between two laser beams with different polarizations incident upon the same 
two-level atom or by using elliptically polarized light. 
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